OPTOMOTIVE

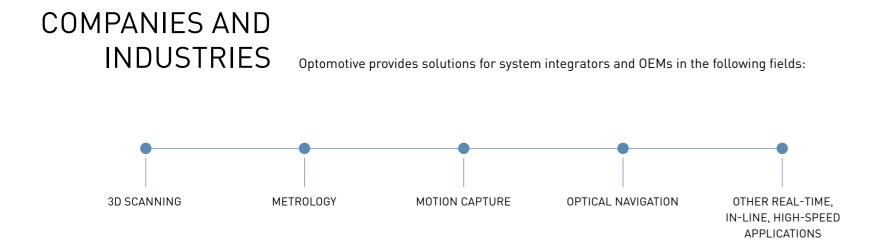
HIGH-SPEED CAMERAS

CUTTING-EDGE, HIGH-PERFORMANCE CAMERAS FPGA TECHNOLOGY FOR REAL TIME IMAGE PROCESSING STANDARD AND FULLY CUSTOMIZED IMAGING SOLUTIONS

CUSTOMIZABLE HIGH-PERFORMANCE, HIGH-SPEED FPGA CAMERAS

We design and produce cutting-edge, high-performance cameras which are based on FPGA technology. The fully programmable FPGAs offer massive computational power which, with image pre-processing inside the camera, substantially reduce bandwidth and offer the most suitable solution for growing sensor speeds and resolutions. We are an established and trusted supplier to OEMs and system integrators.

We specialize in the following camera solutions:


- High-speed Peak detection for laser triangulation;
- High-speed BLOB detection;
- RLE compression and
- Other high-speed machine vision algorithms integrated in cameras.

We provide complete camera solutions with our standard product line, technical expertise and fully customized cameras.

CUSTOMIZED SOLUTIONS TAILORED TO YOUR NEEDS

Should you require customized camera solutions we can provide you with a machine vision solution which will meet your precise needs and specifications. We offer an entire framework for improving the performance of your existing image processing with high-performance programmable cameras and provide you with a new image processing solution tailored exactly to your business.

Optomotive develops camera solutions for most complex applications system integrators are using today. We are an innovative and reliable long-term supplier of cameras with embedded image pre-processing for one of the fastest and most accurate scanners on the market which is widely used for 3D scanning in the production processes of the world's biggest mobile phone manufacturers.

CUTTING-EDGE CAMERA SOLUTIONS

Whichever industry you are in you want to achieve high throughput, tight tolerances and 100% automated inspection. Optomotive cameras are designed to perform at high-resolution and at high-framerate to satisfy your growing needs.

We use high-speed industrial CMOS imaging sensors, which can acquire video at rates up to 100.000 frames per second. The image processing unit is a programmable logic device FPGA, coupled with high-speed memory. This reconfigurable image processor enables parallel real-time image processing. Pre-processing includes for example laser line position detection, BLOB centroid calculation, color processing, compression and other algorithms.

For developers and OEM projects we offer EVO cameras which can be freely programmed and are supplied with hardware/software development kits. All of this makes our cameras unique computer vision machines which are also capable of standalone operations.

Our camera solutions range from standard camera assortment to semi-customized cameras and fully customized camera solutions.

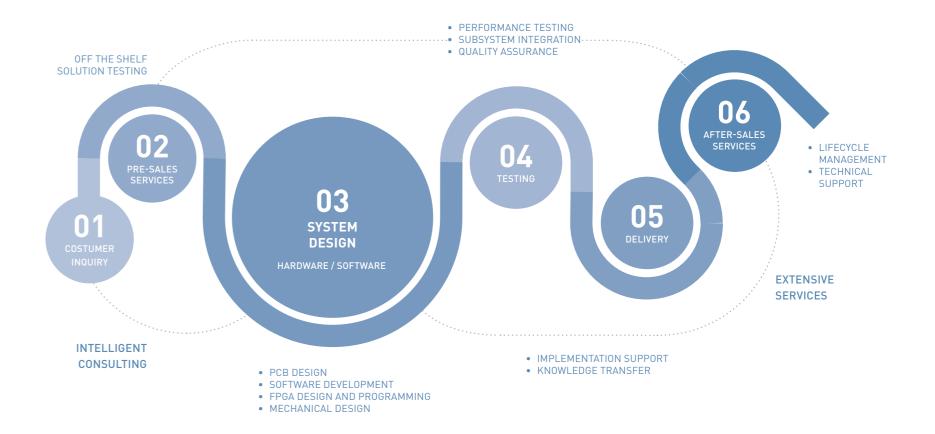
STANDARD CAMERAS

Our standard assortment of modular high-speed intelligent cameras consists of the following camera famillies:

- Smilodon
- Spinosaurus
- T-REX and
- Velociraptor

They cover a wide array of uses with their flexible architecture. The user has full flexibility to select cameras with housing (regular and IP67) or board-level cameras. The camera sensors can be selected depending on resolution and spectral options to exactly match the user's needs. There are also single-head or multi-head solutions available in our range of options. Thanks to built-in large FPGAs the cameras are innovative components for demanding real-time machine vision in industrial and other applications.

CUSTOMIZED CAMERAS


Should you require customized camera solutions we can provide you with a machine vision solution which will meet your precise needs and specifications.

We offer an entire framework for improving the performance of your existing image processing with high-performance programmable cameras and can introduce you a new image processing solutions that are tailored exactly to your business needs. When you are developing new applications that require a high-speed response we can provide you extensive support with image processing embedded inside our camera solutions. Our experienced engineering team can support your technical department in the development of camera hardware and software.

We offer several levels of customization:

- Camera integration into your existing product
- Sensor integration into your new product
- PCB and firmware design

- IP core development
- Software and mechanical design
- Production.

FPGA TECHNOLOGY

FPGA (Field-Programmable Gate Array):

an integrated circuit that supports reconfigurable computing and enables hardware updates.

FPGA enables:

- Programming product features;
- Adapting to new standards and
- Reconfiguring hardware for specific applications (even after hardware installation).

FPGA Programming Made Easy

- FPGA code portability guaranteed
- The same FPGA code can be used across different FPGA families and vendors and
- The code has unlimited validity.
- The FPGA design can be upgraded throughout entire camera's lifetime
- After system deployment features can be added during the camera's lifetime through endless firmware upgrade possibilities.
- No experience with FPGA coding?
- We provide the complete solution with FPGA coding: the only thing we need is the original algorithm and
- We provide training for your engineers.

SOFTWARE

All our cameras use our own in-house developed GUIs which are shipped with every camera:

VEV0_API

For use with all Optomotive EVO cameras, Smilodon, Spinosaurus, T-REX and Velociraptor. MS Windows Dynamic Link Library (DLL)-based Application Programmer Interface (API) used to communicate with Gigabit Ethernet based OptoMotive cameras for usage of cameras in custom applications and in third party applications that allow calling of external DLLs (MATLAB(R), LabVIEW(R), etc.). Kernel filter driver for reliable transmission Full source included.

Examples of usage in C, C# included.

OPTOSTREAM API

For use with GigE Vision compliant cameras. MS Windows Dynamic Link Library (DLL)-based Application Programmer Interface (API).

SHARKI

For use with Velociraptor HS camera. MS Windows-based Graphical User Interface (GUI) for video/image acquisition, storing and camera control.

Intuitive and simple to use.

Basic video manipulations included: crop parts of video, replay

Written in C# .NET 4.0 using Windows Presentation Foundation and Silverlight achieving a highly modern professional look.

Furthermore, user application access to OptoMotive cameras is provided through a simple and documented C API by providing a dynamically linked library.

SERVICE, SUPPORT AND DEVELOPMENT

OPTOMOTIVE TECHNICAL SERVICE

Providing the industry with most innovative Machine Vision systems is the aim of OptoMotive's service. You can choose from our existing range of various IP cores, hardware and software solutions. Or you can employ our competent development team to provide you with solutions that most suit your needs.

OPTOMOTIVE TECHNICAL SUPPORT

By delivering competent technical support, OptoMotive ensures its customers complete and reliable after sales service.

OPTOMOTIVE DEVELOPMENT

OptoMotive employs highly competent engineers from different technical fields, from physics to mechanical engineering, from computer science to electrical engineering.

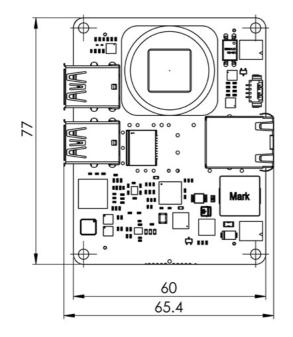
With its broad research and development network, which includes different highly professional high-tech companies, institutes and university laboratories, no task is too difficult for OptoMotive.

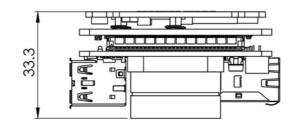
CAMERA Families

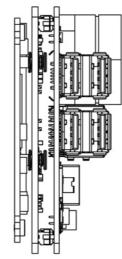
SMILODON SPINOSAURUS T-REX VELOCIRAPTOR The eye of the master will do more work than both his hands. - Benjamin Franklin

CAMERA FAMILIES

SMILODON


SPINOSAURUS


Camera	SMILODON 10G EVO	Camera	SPINOSAURUS EVO	SPINOSAURUS LX EVO
Description	The Smilodon EVO 10G is a global shutter industrial camera based on Xilinx Kria SoM and Gpixel GMAX 5M to 25M high-speed monochrome, colour or near IR imaging sensor - 3D camera with built-in Peak Detection, or with integrated BLOB Detection or RLE Compression. 1G or 10G SFP+ interface.	Description	The Spinosaurus EVO is a highly customizable and user-programmable SoC FPGA based high-speed camera with integrated Sony Pregius Gen3 0.5M to 7.1M high-speed monochrome or colour imaging sensors - 3D camera with built-in Peak Detection or with integrated BLOB Detection or RLE Compression. It has a 10G SFP+ interface.	The Spinosaurus LX EVO is a highly customizable and user-programmable SoC FPGA based high-speed camera with the fastest imaging sensor in our line-up Luxima LUX2810 2.8M monochrome or colour imaging sensor - 3D camera with built-in Peak Detection, or with integrated BLOB Detection or RLE Compression. It has a 10G SFP+ interface.
Use	3D Camera BLOB detection RLE compression	Use	3D Camera BLOB detection RLE compression	3D Camera BLOB detection RLE compression
Resolution	5M-25M	Resolution	0.5M-7.1M	2.8M
Spectral Option	monochrome color	Spectral Option	monochrome color	monochrome color
Interface	1G or 10G SFP+	Interface	10G SFP+	10G SFP+
	14		18	22


T-REX	VEI	LOCIRAPTOR		
Camera	T-REX EVO	Camera	VELOCIRAPTOR EVO	VELOCIRAPTOR HS
Description	The T-REX EVO is an entry level user-programmable SoC FPGA based high-speed smart camera with integrated AMS CMV2000/4000 monochrome, colour or near IR 2M to 4M imaging sensors - 3D Camera with built-in Peak Detection, or with integrated BLOB Detection or RLE Compression. It has a 1G PoE interface.	Description	The Velociraptor EVO is an entry level user-programmable FPGA based high- speed smart camera with integrated AMS CMV2000/4000 monochrome, colour or near IR 2M to 4M imaging sensors - 3D Camera with built-in Peak Detection, or with integrated BLOB detection or RLE compression. It has a 1G PoE interface.	The Velociraptor HS is an entry level hig speed camera for long term high frame rate video recording with integrated AMS CMV2000/4000 monochrome or colour 2M to 4M imaging sensors. It has a 1G PoE interface. The camera has on-board JPEG compression. It was developed to the gap in the market between standard industrial cameras and high-speed cameras.
Use	3D Camera BLOB detection RLE compression	Use	3D Camera BLOB detection RLE compression	High-Speed Video Recording
Resolution	2M-4M	Resolution	2M-4M	2M-4M
Spectral Option	monochrome color near-IR	Spectral Option	monochrome color near-IR	monochrome color near-IR
Interface	1G PoE	Interface	1G PoE	1G PoE
	26		30	34

SMILODON 10G EVO

		Smilodon	10G EV0		
Resolution	5.0 MP	9 MP	18 MP	25 MP	
Active Pix- els (HxV)	2600 x 2160	4200 x 2160	4508 x 4096	5120 x 5120	
Frame Rate	290 FPS	290 FPS	139 FPS	150 FPS	
Sensor Format	1/2"CM0S	2/3"CM0S	1"CMOS	1.1"CM0S	
Pixel Size	2.5 µm	2.5 µm	2.5 µm	2.5 µm	
Sensor: Gpixel Sensor	GMAX2505	GMAX2509	GMAX2518	GMAX0505	
Interface	1 or 10 Gigabit Ethernet SFP+ for fast data transmission				
Program- mable and Reconfigu- rable FPGA	Xili	Xilinx Zynq Ultrascale+ Kria K26			

KEY CAMERA FEATURES

- Turbocharged industrial Gpixel GMAX25xx sensors, Color (Bayer) and
- Possible interfaces: 1 or 10 GigE.

SMILODON 10G EVO is a highly customizable and user-programmable FPGA-based high-speed smart camera featuring a high-performance FPGA. It is a camera with a Xilinx Zynq FPGA, high-speed imaging sensor and a 1 or 10 Gigabit Ethernet. It includes high-performance ARM System-on-Chip (SoC) technology, combined with high-speed industrial Gpixel imaging sensors.

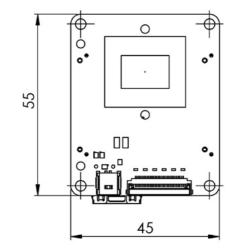
Smilodon 10G EVO includes full customizable and user-programmable open-reference design for a high-speed FPGA-based camera and application development system. Its emphasis is on an open hardware/software development model, high-frame rates, real-time image processing on FPGA and modern graphical user interface support on the PC side.

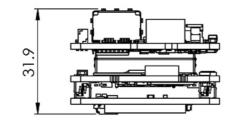
A suite of versatile and high-performance tools for Xilinx Zynq Ultrascale+ SoC FPGA is used to develop algorithms and process data in realtime. Images are acquired by 4 different Gpixel GMAX25xx sensors with up to 48x LVDS interface (46 Gbps), achieving brilliant images at a very high speed. The on-board 4GB DDR4 memory with 19 GB/s of bandwidth enables usage of complex buffered image processing.

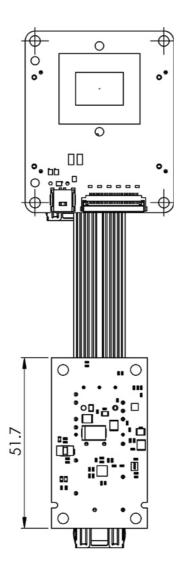
The reference design can be easily edited with standard Xilinx Vivado tools. OptoMotive's custom IP cores seamlessly integrate inside the Xilinx Vivado toolchain. A large portion of the FPGA (PL) is free for the programming and development of new algorithms or the implementation of additional IP cores. The 1.2 GHz Quad Core ARM Cortex A53 Programmable Subsystem runs a Linux OS with a custom-made EVO control and streaming stack (including Zero-copy TCP/IP stack). The SoC also includes dual 600MHz Cortex R5 processors which are free for user data processing. User applications or custom data post-processing can easily be added to the existing design.

TARGETED FOR:

- Laser triangulation with a ready-made Peak detector on-board image processing core;
- Motion capture with a ready-made BLOB detector or Running Length Encoder (RLE) on-board image processing core;
- Industrial process automation to count, detect, check, verify, read, inspect and test different products, levels, components, etc. at incredible speed and
- Industrial quality control: to inspect defects, cracks or surface blemishes, size, position, dimension and color, foreign objects, quality General R&D.


SMILODON 10G EVO


	CAMERA FAMILY		SMILODO	N 10G EVO			
	Camera Model	5	9	18	25		
	Model (Gpixel)	GMAX2505	GMAX2509	GMAX2518	GMAX0505		
	Monochrome (M)						
	Bayer Color (C)	M or C	M or C	M or C	M or C or I		
	VIS-NIR (IR)						
IMAGING SENSOR	Diagonal mm	8.45 (1/2")	11.8 (2/3")	15.2 (1")	18.1 (1.1")		
	Active pixels H x V	2600 x 2160	4200 x 2160	4508 x 4096	5120 x 5120		
ISO	Frame Rate (Full Frame)	290 FPS	290 FPS	139 FPS	150 FPS		
	Pixel Size	2.5 µm	2.5 µm	2.5 µm	2.5 µm		
5	Dynamic Range 10bit/12bit	62/65 dB	62/65 dB	62/67 dB	60/65 dB		
	ADC Resolution		10/ 1	2 bit			
7WI	Analogue Gain	x1 – x2, step of x0.25 @10bit					
	Anatoyue Gam	x1 – x4, step of x0.25 @12bit					
	Region of Interest	YES, with 16 pixel increments					
	Shutter Type		Electronic g	lobal shutter			
	Shutter Time		5 us	– 90 s			
	Pixel Clock Speed		From 1.5 to	o 3.8 Gpix/s			
	Exposure		Linear, odd/e	even row HDR			
ш	Pixel Correction	C	Dead pixel, LUT, f	lat-field correction	on		
UR	Trigger Modes	Free	e running, trigger	, overlap, pulse v	vidth		
FEATURE	Trigger Features	Delay	y 0 – 1000 ms, LF	Filter 1.5Hz - 10	0 kHz		
ŭ —	Shutter Resolution		TI	3D			


	CAMERA FAMILY	SMILODON 10G EVO
97	FPGA	Xilinx Zynq Ultrascale+ Kria K26
	Free FPGA %	> 50%
PROCESSING	Volatile Memory	4 GB DDR4 with 19.2 GB/s bandwidth
РК —	Non-volatile Memory	64 MB QSPI flash, 16 GB eMMC
	Lens Mount	C-mount (1" 32G thread)
	Temp Range	0 - 50°C
	Mass	TBD
AN	Protection	TBD
MECHANICAL	Housing Material	CNC-machined aluminum, anodized
Σ	RoHS	RoHS compliant
	Fixing Holes	4x M3 0EM
с	Input Voltage	DC 9-50V
TRI	Consumption	up to 30W
ELECTRIC	10 Isolation	1x IN / 1x OUT opto-isolated
Ш	Connectors	10G SFP+, 1G RJ45, 4x USB, 10 pin Hirose HR10A
	On-board Image Processing	As an option (if an IP Core is integrated)
FUNCTIONALITIES	Open Reference Design	Yes
	Open architecture	Yes
	Software	Compatible with OptoMotive EVO software (full source included
L'O N	Operating System	Windows 7, Windows 10, 64bit or 32bit
FU	Development Tools	Xilinx Vivado/SDK version 2021 or later Microsoft Visual Studio 2017 or later

SPINOSAURUS EVO

KEY CAMERA FEATURES

		SP	INOSAURUS E	EV0	
Resolution	0.5 MP	2.0 MP	2.8 MP	1.7 MP	7.1 MP
Active Pixels (HxV)	816 x 624	1632 x 1248	1944 x 1427	1608 x 1104	3216 x 2208
Frame Rate	1590 FPS	470 FPS	408 FPS	660 FPS	200 FPS
Sensor Format	1/1.7" CMOS	1/1.7" CMOS	2/3" CMOS	1.1" CMOS	1.1" CM05
Pixel Size	9 µm	4.5	μm	9 µm	4.5 µm
Sensor: SONY High-Speed Image Sensor	IMX426	IMX422	IMX421	IMX425	IMX420
Interface	10 Gig	10 Gigabit Ethernet SFP+ for fast data transmission			
Program- mable and Reconfigu- rable FPGA		Xilinx Zynq Ultrascale			

SPINOSAURUS EVO is a highly

customizable and user-programmable FPGA based on high-speed smart cameras, is a high-end FPGA camera with a Xilinx Zynq FPGA and high-speed imaging sensor and a 10 Gigabit Ethernet. It includes highperformance ARM System-on-Chip (SoC) technology combined with a turbocharged industrial SONY imaging sensor.

With high-performance FPGA System-on-Chip (SoC) technology, the Spinosaurus EVO camera family opens new dimensions in computer vision. It is a global shutter industrial camera with high frame rates and an open FPGA architecture. With FPGA processing power the image processing algorithms can run in real-time on the camera. Just add your imagination.

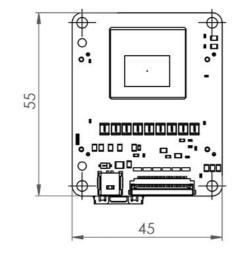
Spinosaurus EVO includes full customizable and user-programmable open reference design for a high-speed, FPGA-based camera and application development system. Its emphasis is on an open hardware/software development model, high-frame rates, real-time image processing on FPGA and modern graphical user interface support on the PC side.

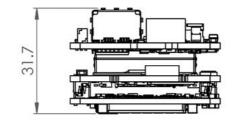
A suite of versatile and high-performance tools for Xilinx Zynq Ultrascale+ SoC FPGA are available to develop algorithms and process data in real-time. Images are acquired by SONY PREGIUS GEN3 sensors with a SLVS-EC v1.2 interface (8x 2.3 Gbps) achieving a brilliant image at very high speed. The on-board 4GB LPDDR4 memory with 9.6 GB/s of bandwidth enables usage

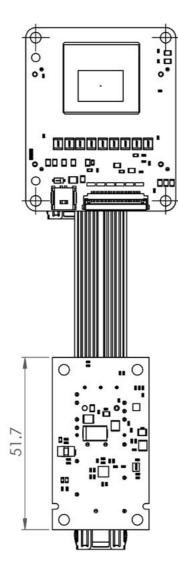
of complex buffered image processing. The reference design can be easily edited with standard Xilinx Vivado tools. OptoMotive's custom IP cores seamlessly integrate inside the Xilinx Vivado toolchain. A large portion of FPGA (PL) is free for the programming and development of new algorithms or the implementation of additional IP cores. The 1.2 GHz Dual Core ARM Cortex A53 Programmable Subsystem runs a Linux OS with custommade EVO control and streaming stack (including Zero-copy TCP/IP stack). The SoC also includes dual 600MHz Cortex R5 processors which are free for user data processing. User applications or custom data post-processing can be easily added to any existing design.

APPLICATIONS:

- Laser triangulation with a readymade Peak detector on-board image processing core;
- Motion capture with a ready-made BLOB detector or Running Length Encoder (RLE) on-board image processing core;
- Industrial process automation to count, detect, check, verify, read, inspect and test different products, levels, components, etc. at incredible speed;
- Industrial quality control to inspect defects, cracks or surface blemishes, size, position, dimension and color, foreign objects or quality and
- General R&D.


SPINOSAURUS EVO


	CAMERA FAMILY			SPINOSAURUS EVO				
	Camera Model	0.5	2.0	2.8	1.7	7.1		
	Model (SONY)	IMX426	IMX422	IMX421	IMX425	IMX420		
	Monochrome (M) Bayer Color (C)	M or C	M or C	M or C	M or C	M or C		
	Diagonal mm	9.25 (1/1.7")	9.25 (1/1.7")	10.97 (2/3")	17.55 (1.1")	17.55 (1.1")		
	Active Pixels H x V	816 x 624	1632 x 1248	1944 x 1427	1608 x 1104	3216 x 2208		
SENSOR	Frame Rate (Full Frame)	1590 FPS	470 FPS	408 FPS	660 FPS	200 FPS		
Ч	Pixel Size	9 µm	4.5 μm		9 µm	4.5 µm		
ב	Dynamic Range	86 dB	80 dB		86 dB	80 dB		
MAGING	ADC Resolution	8/10/12 bit						
Σ	Analogue Gain			0-48dB at 0.1dB step)			
	Region of Interest		YES,	with 16 pixel increm	nents			
	Shutter Type	Electronic global shutter						
	Shutter Time	5 us – 90 s						
	Pixel Clock Speed	1.9 Gpix/s (16 pixels @ 118.8 MHz)						
	Exposure	Linear, dual gain high dynamic range						
Ņ	Pixel Correction		Dead pixel c	orrection and progra	mmable LUT			
	Trigger Modes		Free running	g, trigger, overlap and	d pulse width			
FEALURES 	Trigger Features		Delay 0 – 10	000 ms, LP Filter 1.51	Hz - 100 kHz			
	Shutter Resolution			1.56 us				


	CAMERA FAMILY	SPINOSAURUS EVO
ŊĊ	FPGA	Xilinx Zynq Ultrascale+ ZU4CG
SSII	Free FPGA %	Up to 50%, most of 728 slices of DSP are free.
PROCESSING	Volatile Memory	2 GB LPDDR4 with 9.6 GB/s bandwidth
PR	Non-volatile Memory	64 MB QSPI flash, 8 GB eMMC
	Lens Mount	C-mount (1" 32G thread)
Ļ	Temp Range	0 - 50°C
MECHANICAL	Mass	TBD
AAN	Protection	Up to IP67 with housing
Ë	Housing Material	CNC-machined aluminum, anodized
Σ	RoHS	RoHS compliant
	Fixing Holes	4x M3 OEM / 5 x M6 on housing
Ļ	Input Voltage	DC 9-36V or 5V (OEM)
lC⊿	Consumption	up to 30W
ELECTRICAL	10	20x 3.3V TTL ZIF
Ĕ	10 Isolation	3x IN / 3x OUT opto-isolated
Ш	Connectors	10G SFP+, 10 pin Hirose HR10A, ZIF or OEM
S	On-board Image Processing	As an option (if an IP core is integrated)
Ë	Open Reference Design	Yes
AL	Open Architecture	Yes
NO	Software	Compatible with OptoMotive EVO software (full source included)
CTI	Operating System	Windows 7, Windows 10, 64bit or 32bit
FUNCTIONALITIES	Development Tools	Xilinx Vivado/SDK version 2018.2 or later. Microsoft Visual Studio 2017

SPINOSAURUS LX EVO

KEY CAMERA FEATURES

- Resolution: 3.0 MP (2112 x 1432);
- Frame Rate: 934 fps;
- Sensor Format: 1"CMOS;
- Pixel Size: 6.6 µm;
- Sensor: high-speed industrial Luxima LUX2810 sensor, color (Bayer filter), monochrome;
- Interface: 10 Gigabit Ethernet SFP+ for fast data transmission;
- Programmable and reconfigurable FPGA with Quad ARM processor Zyng Ultrascale+.

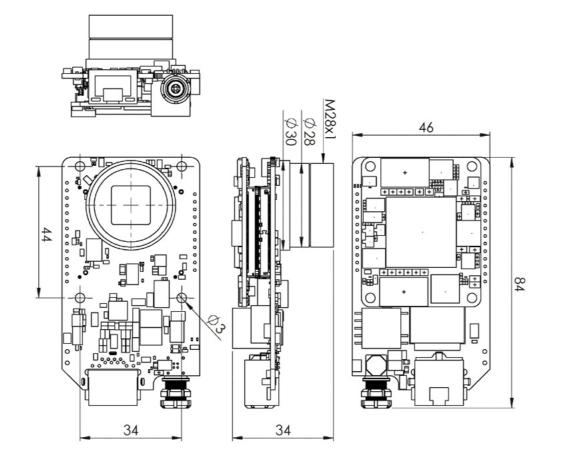
Spinosaurus LX EVO is a highly customizable and user-programmable FPGA-based highspeed smart cameras, is a high-end FPGA camera with a Xilinx Zynq FPGA and highspeed imaging sensor and a 10 Gigabit Ethernet. It includes high-performance ARM System-on-Chip (SoC) technology combined with turbocharged industrial LUXIMA imaging sensors.

With high-performance FPGA System-on-Chip (SoC) technology, Spinosaurus LX EVO camera opens new dimensions in computer vision. It is a global shutter industrial camera with incredible frame rates and an open FPGA architecture. With its FPGA processing power the image processing algorithms can run in real-time on the camera. Spinosaurus LX EVO includes a fully customizable and user-programmable openreference design for its high-speed FPGA-based camera and application development system. Its emphasis is on an open hardware/software development model, high-frame rates, realtime image processing on FPGA and modern graphical user interface support on the PC side.

A suite of versatile and high-performance tools for Xilinx Zynq Ultrascale+ SoC FPGA is used to develop algorithms and process data in realtime. Images are acquired by Luxima LUX2810 sensors with 32x LVDS interface (29 Gbps) achieving brilliant images at a very high speed. The on-board 2GB LPDDR4 memory with 19 GB/s of bandwidth enables usage of complex buffered image processing. The reference design can be easily edited with standard Xilinx Vivado tools. OptoMotive 's custom IP cores seamlessly integrate inside the Xilinx Vivado toolchain. A large portion of FPGA (PL) is free for the programming and development of new algorithms, or the implementation of additional IP cores. The 1.2 GHz Quad Core ARM Cortex A53 Programmable Subsystem runs Linux OS with custom made EVO control and streaming stack (including Zero-copy TCP/IP stack). The SoC also includes dual 600MHz Cortex R5 processors which are free for user data processing. User applications or custom data post-processing can easily be added to the existing design.

APPLICATIONS:

- Laser triangulation- with a ready-made Peak detector on-board image processing core;
- Motion capture with a ready-made BLOB detector or Running Length Encoder (RLE) on-board image processing core;
- Industrial process automation to count, detect, check, verify, read, inspect and test different products, levels, components, etc. at an incredible speed;
- Industrial quality control to inspect defects, cracks or surface blemishes, size, position, dimension and color, foreign objects or quality and
- General R&D.


SPINOSAURUS LX EVO

	CAMERA FAMILY	SPINO	SAURUS LX EVO		
	Camera model	3.0M	3.0C		
	Model (Luxima)	LUX2810M	LUX2810C		
	Color Filter	Mono (M)	Bayer (C)		
	Diagonal mm		16.84 (1")		
	Active pixels H x V	2112 x 1432			
MAGING SENSOR	Frame Rate (Full Frame)	778 FPS (re	ev 1), 934 FPS (rev 3)		
Ž	Pixel Size		6.6 µm		
ບ ເ	Dynamic Range		54 dB		
Ž	ADC Resolution		12 bit		
	Analogue Gain	1x-	-8x at 1x step		
=	Region of Interest	YES, with	16 pixel increments		
	Shutter Type	Electro	nic global shutter		
	Shutter Time		5 us – 90 s		
	Pixel Clock Speed		ixels @ 150 MHz for rev 1) pixels @ 180 MHz for rev 3)		
	Exposure	Linear, Dual G	ain High Dynamic Range		
S	Pixel Correction		xel correction and rammable LUT		
URE	Trigger Modes	Free running, tr	igger, overlap, pulse width		
FEATURES	Trigger Features		1000 ms, LP Filter Hz - 100 kHz		
	Shutter Resolution		1.56 us		

	CAMERA FAMILY	SPINOSAURUS LX EVO
970	FPGA	Xilinx Zynq Ultrascale+ ZU4CG
PROCESSING	Free FPGA %	Up to 50%, most of the 728 slices of DSP are free.
- OCE	Volatile Memory	2 GB LPDDR4 with 9.6 GB/s bandwidth
PR _	Non-volatile Memory	64 MB QSPI flash, 8 GB eMMC
	Lens Mount	C-mount (1" 32G thread)
Ļ	Temp Range	0 - 50°C
MECHANICAL	Mass	TBD
AA _	Protection	Up to IP67 with housing
<u>п</u>	Housing Material	CNC-machined aluminum, anodized
Σ	RoHS	RoHS compliant
	Fixing Holes	4x M3 0EM
Ļ	Input Voltage	DC 9-36V or 5V (OEM)
	Consumption	up to 30W
ELECTRICAL	10	20x 3.3V TTL ZIF
Ë L	IO Isolation	3x IN / 3x OUT opto-isolated
ш	Connectors	10G SFP+, 10 pin Hirose HR10A, ZIF on OEM
6	On-board Image Processing	As an option (if an IP Core is integrated)
IE –	Open Reference Design	Yes
ALI	Open Architecture	Yes
FUNCTIONALITIES	Software	Compatible with OptoMotive EVO software (full source included)
NCT	Operating System	Windows 7, Windows 10, 64bit or 32bit
Β.	Development Tools	Xilinx Vivado/SDK version 2018.2 or later. Microsoft Visual Studio 2017

	T-RE>	(EVO
Resolution	2.2 MP	4.2 MP
Active Pixels (HxV)	2048 x 1088	2048 x 2048
Frame Rate	331 FPS	176 FPS
Sensor Format	2/3"CM05	1" CM0S
Pixel Size	5.5 µm	5.5 µm
Sensor: CMOSIS Image Sensor	CMV2000	CMV4000
Interface	1 Gigabit Eth for fast data t	
Programmable and Reconfigurable FPGA	Zynq 7020	

KEY CAMERA FEATURES

T-REX EVO is a highly customizable and userprogrammable FPGA-based high-speed smart camera which features a high-end FPGA camera with a Xilinx Zynq FPGA and a highspeed imaging sensor and a Gigabit Ethernet. It includes ARM System-on-Chip (SoC) technology combined with a turbocharged industrial CMOSIS imaging sensor.

With high-performance FPGA System-on-Chip (SoC) technology, the T-REX EVO camera family opens new dimensions in computer vision. It is a global shutter industrial camera with incredible frame rates and an open FPGA architecture. With FPGA processing power the image processing algorithms can run in real time on the camera: just add your imagination.

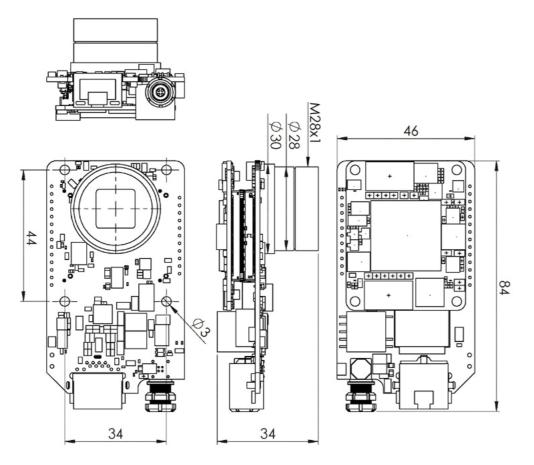
T-REX EVO incorporates a fully customizable and user-programmable open-reference design for its high-speed FPGA-based camera and application development system. Its emphasis is on an open hardware/software development model, high-frame rates, real-time image processing on FPGA and modern graphical user-interface support.

A suite of intermediate, versatile Xilinx Zynq 7020 FPGAs is used to develop algorithms and process data in real-time. Images are acquired by a CMOSIS sensor, CMV2000 (2048x1088 pixels, 2/3'' size) or CMV4000 (2048x2048 pixels, 1'' size). The sensor outputs 760 million pixels per second resulting in 331 FPS (CMV2000) and 176 FPS (CMV4000) at full frame. The onboard 512MB LPDDR2 memory with 3.2GB/s of bandwidth enables usage of complex buffered image processing.

The reference design can be easily edited with standard Xilinx Vivado tools. OptoMotive's custom IP cores seamlessly integrate inside the Xilinx Vivado toolchain. A large portion of FPGA (PL) is free for the programming and development of new algorithms or the implementation of additional IP cores. The 700MHz Dual Core ARM Cortex A9 Programmable Subsystem runs Linux OS with a custom-made EVO control and streaming stack. User applications or custom data postprocessing can easily be added to the existing design.

TARGETED FOR:

- Laser triangulation with a ready-made Peak detector with an on-board image processing core;
- Motion capture with a ready-made BLOB detector or Running Length Encoder (RLE) on-board image processing core;
- Industrial process automation to count, detect, check, verify, read, inspect and test different products, levels, components, etc. at and incredible speed;
- Industrial quality control to inspect defects, cracks or surface blemishes, size, position, dimension and color, foreign objects or quality and
- General R&D.


T-REX EVO

	CAMERA FAMILY		T-REX EVO						
	Camera model	2.2M	2.2IR	2.2C	4.2M	4.2IR	4.2C		
			CMV2000			CMV4000			
	Model (CMOSIS)	2E5M1PP	E12M1PP	2E5C1PP	2E5M1PP	E12M1PP	2E5C1PF		
	Color Filter	None	None	Bayer	None	None	Bayer		
	Diagonal		12.7 mm (2/3")	•		15.92 mm (1")			
	Active Pixels		2048 x 1088			2048 x 2048			
	Pixel Size			5.5 μm :	x 5.5 µm				
SOR	Pixel Data Formats	MONO8 (M and IR), BAYER8 (C only)							
IMAGING SENSOR	Region of Interest	YES, with 8 pixel increments							
IG S	Pixel Clock Speed	760 MHz (8 pixels @ 95 MHz)							
	Frame Rate (Full Frame)	331 FPS			176 FPS				
Ψ	RAW Frame Rate*		54 FPS			26 FPS			
	ADC Resolution			10	bit				
	Analogue Gain			1 -	3.2x				
	Shutter Type	Electronic global shutter							
	Shutter Time			2.4 us	– 90 s				
	Exposure	Linear, 3 slope high dynamic range							
	Dynamic Range	60 dB							
IRES	Pixel Correction	Dead pixel correction and programmable LUT							
	Trigger Modes	Free running, trigger, overlap and pulse width							
FEATURES	Trigger Features				- 1000 ms Hz - 100 kHz				
_	Shutter Resolution			21	ns				

	CAMERA FAMILY	T-REX EVO	
9	FPGA	Zynq 7020	
SSIN	Free FPGA %	Up to 50%, most of the 220 slices of DSP are free.	
PROCESSING	Volatile Memory	512MB LPDDR2	
<u>н</u> д —	Non-volatile Memory	32MB QSPI flash, optional eMMC	
	Lens Mount	C-mount (1" 32G thread)	
	Temp Range	0 - 50°C	
MECHANICAL	Mass	50 g OEM / 290 g with housing	
AAN	Protection	Up to IP67 with housing	
	Housing Material	CNC-machined aluminum, anodized in a special OptoMotive blue color	
Σ –	RoHS	RoHS compliant	
	Fixing Holes	4x M3 OEM / 5 x M6 on housing	
	Input voltage	Power over Ethernet 42-57V or 5V (OEM)	
ELECTRICAL	Consumption	up to 11W	
TRI	10	3x bidirectional 5V TTL	
E E	IO Isolation	No, but camera has 1.5kV PoE isolation	
ш –	Connectors	RJ45, 4 pin LEMO EXG 00 304	
S	On-board Image Processing	As an option (if an IP Core is integrated)	
Ē	Open Reference Design	Yes	
NAL	Open Architecture	Yes	
FUNCTIONALITIES	Software	Compatible with OptoMotive EVO software (full source included)	
	Operating System	Windows 7, Windows 10, 64bit or 32bit	
щ —	Development Tools	Xilinx Vivado/SDK 2017.2 Microsoft Visual Studio 2017	

VELOCIRAPTOR EVO

KEY CAMERA FEATURES

	Velocirapt	or EVO
Resolution	2.2 MP	4.2 MP
Active Pixels (HxV)	2048 x 1088	2048 x 2048
Frame Rate	331 FPS	176 FPS
Sensor Format	2/3" CMOS	1" CM0S
Pixel Size	5.5 µm	5.5 µm
Sensor: CMOSIS Image Sensor	CMV2000	CMV4000
Interface	1 Gigabit Ethe for fast data tra	
Programmable and Reconfigurable FPGA	Spartan-6	LX150

Velociraptor EVO is a highly customizable and user-programmable FPGA-based high-speed smart camera: the ultimate FPGA camera with a very large Xilinx Spartan-6 FPGA and high-speed imaging sensor. It is based on GigaBee modules which incorporate dual DD3 memory and Gigabit Ethernet. It features the ultimate-performance System-on-Chip (SoC) technology combined with the latest turbocharged industrial CMOSIS imaging sensor.

Velociraptor EVO includes a fully customizable and user-programmable open-reference design for a high-speed FPGA-based camera and application development system. Its emphasis is on an open-hardware/software development model featuring high-frame rates, real-time image processing, ultra-large FPGA and modern graphical user interface support.

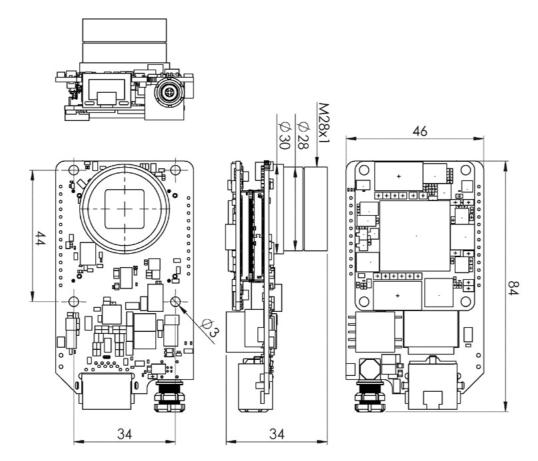
A suite of intermediate, versatile and large Xilinx Spartan-6LX150 FPGAs is used to develop algorithms and process data in real-time. Images are acquired by a CMOSIS sensor, CMV2000 (2048x1088 pixels, 2/3" size) or CMV4000 (2048x2048 pixels, 1" size). The Sensor is very fast and outputs up to 768 million pixels per second resulting in 333 FPS (CMV2000) and 178 FPS (CMV4000) at full frame. The on-board 2x128MB DDR3 memory with 2x1.6GB/s of bandwidth enables usage of complex buffered image processing. A unique UDP based Ethernet protocol, developed especially for this camera, is used for communication with a PC. The camera is Ethernet powered (IEEE 802.3at PoE) with power consumption up to 10W.

Velociraptor EVO cameras are suitable for demanding applications where extremely high-speed and high-frame rates are needed in combination with real-time image processing and adaptability to specific products or systems.

The Velociraptor EVO is targeted to Original Equipment Manufacturers (OEMs) who are seeking components that can be adapted to specific products or systems. The Velociraptor EVO camera provides a flexible framework of core capabilities that will serve as a platform for multimodal functionality. The framework is expandable, scalable and flexible to accommodate new algorithms and can be interoperable with existing systems. In two words, it's versatile and affordable, in all possible ways.

TARGETED FOR:

- Industrial process automation to count, detect, check, verify, read, inspect and test different products, levels, components etc.;
- Industrial quality control to inspect defects, cracks or surface blemishes, size, position, dimension and color, foreign objects and quality;
- Solar Cell Panel Inspection to inspect wafer, surface defects, glass, etc. and
- General R&D.


VELOCIRAPTOR EVO

	CAMERA FAMILY			VELOCIRA	PTOR EVO				
	Camera Model	2.2M	2.2IR	2.2C	4.2M	4.2IR	4.2C		
			CMV2000			CMV4000			
	Model (CMOSIS)	2E5M1PP	E12M1PP	2E5C1PP	2E5M1PP	E12M1PP	2E5C1PP		
	Color Filter	None	None	Bayer	None	None	Bayer		
	Diagonal		15.92 mm (1")						
	Active Pixels	2048 x 1088			2048 x 2048				
	Pixel Size	5.5 μm x 5.5 μm							
	Pixel Data Formats	MONO8 (M and IR), BAYER8 (C only)							
~	Region of Interest	YES, with 8 pixel increments							
NSO	Pixel Clock Speed	760 MHz (8 pixels @ 95 MHz)							
S E	Frame Rate (Full Frame)	331 FPS			176 FPS				
IMAGING SENSOR	RAW Frame Rate	54 FPS			26 FPS				
1AG	ADC Resolution	10 bit							
≤ _	Analogue Gain	C mount holder without lens included							
	Analogue Gain	1-32x							
	Digital Gain	Programmable look up table in FPGA							
	Shutter Type	Electronic global shutter							
	Shutter Resolution	21 ns							
	Shutter Time	210 ns – 90 s							
	Exposure	Linear, 3 slope high dynamic range							
	Scanning System	Progressive							
ES	Trigger Modes	Free running, trigger, overlap, pulse width							
FEATURES	Trigger Features				· 1000 ms Hz - 100 kHz				
ш —	Dynamic Range	60 dB							

	CAMERA FAMILY	VELOCIRAPTOR EVO					
ß	FPGA	Spartan6LX150					
SSIN	Free FPGA %	Up to 70%, most of the 180 slices of DSP are free.					
PROCESSING	Volatile Memory	2x 128 MB DDR3 SDRAM					
Я –	Non-volatile Memory	8MB flash					
	Lens Mount	C-mount (1" 32G thread)					
	Temp Range	0 - 50°C					
MECHANICAL	Mass	50 g OEM / 290 g with housing					
AAN _	Protection	Up to IP67 with housing					
EC	Housing Material	CNC-machined aluminum, anodized in a special OptoMotive blue color					
Σ –	RoHS	RoHS compliant					
_	Fixing Holes	4 x M3 OEM / 2 x M6 with housing					
	Input Voltage	Power over Ethernet, 42-57V					
	Consumption	Up to 10W					
	10	3x bidirectional					
	IO Isolation	No, but camera has 1.5kV PoE isolation					
ш –	Connectors	RJ45, 4 pin LEMO EXG 00 304					
	On-board Image Processing	As an option (if an IP core is integrated)					
S: _	IP Cores	Yes. Can be implemented into the camera additionally. See the List of IP cores available.					
Ē	Open Reference Design	Yes					
	Open Architecture	Yes					
₽Ë –	Software	Compatible with OptoMotive VEVO software (full source code included)					
FUNCTIONALITIES	Operating System	Windows 7, Windows 10, 64bit or 32bit					
ŭ –	Development Tools	Xilinx ISE/EDK version 13.3 or later, Microsoft Visual Studio 2010					

VELOCIRAPTOR HS

KEY CAMERA FEATURES

Velocira	otor HS
2.2 MP	4.2 MP
2048 x 1088	2048 x 2048
331 FPS	176 FPS
2/3" CMOS	1" CM0S
5.5 µm	5.5 µm
CMV2000	CMV4000
Spartand	5 LX150
	2048 x 1088 331 FPS 2/3" CMOS 5.5 μm

- JPEG compression core embedded in the camera for achieving high streaming frame rates up to 333 FPS at full resolution as an option;
- GigE Vision® 1.2 and GenICam[™] 2.0 compliant;
- Gigabit Ethernet for easy data transmission and
- Delivered in CNC housing.

VELOCIRAPTOR HS is the ultimate FPGA camera with a very large Xilinx Spartan-6 FPGA and high-speed imaging sensor. It is developed to fill the gap in the market between standard industrial cameras and high-speed cameras. The Camera has small and ruggedized waterproof aluminum housing design (90x52x40 mm) with an innovative mounting system (balljoint).

It is Ethernet powered (IEEE 802.3at PoE) with a power consumption up to 10W. Imaging sensors were carefully selected and the ones selected were the best market has to offer: turbocharged CMOSIS imaging sensors CMV2000 (2048x1088 pixels, 2/3" size) or CMV4000 (2048x2048 pixels, 1" size).

The sensors include all features a modern machine vision sensor should have: a global shutter, several high dynamic range modes and an overlapping trigger mode. As already mentioned the sensor is very fast and outputs up to 768 million pixels per second resulting in 331 FPS (CMV2000) and 176 FPS (CMV4000). At a reduced frame size the frame rate can go up to 5000 frames per second.

With high-performance FPGA System-on-Chip (SoC) technology, the Velociraptor camera family opens new dimensions in computer vision. It is a global shutter high-speed camera with incredible frame rates and a range of real-time image-processing cores (JPEG compression, color processing, etc.). A JPEG compression core operating at maximum frame rate is offered with this camera. This core was developed especially for this camera, since there was no JPEG core with sufficient performance available on the market. The compression core enables long recording of high-speed video and direct PC storage.

TARGETED FOR:

- Motion analysis and slow-motion photography

 from understanding river erosion to
 unravelling the mysteries of the flight of fruit
 flies;
- Ballistics freeze the motion of an in-flight bullet;
- Sports golf, baseball, basketball or football;
- Medical imaging body movement analyses;
- Troubleshooting analysis and
- Broadcast high-speed video capture and slow-motion replay.

VELOCIRAPTOR HS

	CAMERA FAMILY			VELOCIR	APTOR HS			
	Camera Model	2.2M	2.2IR	2.2C	4.2M	4.2IR	4.2C	
-			CMV2000			CMV4000		
	Model (CMOSIS)	2E5M1PP	E12M1PP	2E5C1PP	2E5M1PP	E12M1PP	2E5C1PI	
-	Color Filter	None	None	Bayer	None	None	Bayer	
-	Diagonal		12.7 mm (2/3")			15.92 mm (1")		
-	Active Pixels		2048 x 1088			2048 x 2048		
-	Pixel Size			5.5 µm	x 5.5 μm			
-	Pixel Data Formats				R), BAYER8 (C only) PEG			
	Region of Interest	YES, with 8 pixel increments						
SOR	Pixel Clock Speed	760 MHz (8 pixels @ 95 MHz)						
MAGING SENSOR	Frame Rate (Full Frame)	331 FPS			176 FPS			
GIN	RAW Frame Rate	54 FPS			26 FPS			
MM	Max. Frame Rate*			5000) FPS			
	ADC resolution			10	bit			
=	Lenses			C mount holder wi	thout lens included	l.		
	Analogue Gain			1 -	3.2x			
	Digital Gain			Programmable lo	ok up table in FPGA	l l		
	Shutter Type			Electronic g	lobal shutter			
-	Shutter Resolution			21	ns			
	Shutter Time			20us	– 90 s			
-	Exposure	Linear, 3Slope high dynamic range						
	Scanning System	Progressive						
ES	Trigger Modes		Free	e running, trigger,	overlap and pulse v	vidth		
FEATURES	Trigger Features				- 1000 ms 5Hz - 100 kHz			
Ë	Dynamic Range			60	dB			

()			
Nic -	FPGA	Spartan-6LX	
PROCESSING	Volatile Memory	2x 128 MB DDR3 SDRAM	
PRO	Non-volatile Memory	8MB flash	
	Lens Mount	C-mount (1" 32G thread)	
	Temp Range	0 - 50°C	
MECHANICAL	Mass	50 g OEM / 290 g with housing	
AAN	Protection	Up to IP67 with housing	
EC	Housing Material	CNC-machined aluminum, anodized in a special OptoMotive blue color	
Σ	RoHS	RoHS compliant	
-	Fixing Holes	4x M3 0EM / 2 x M6 with housing	
	Input Voltage	Power over Ethernet, 42-57V	
CAL	Consumption	10W	
ELECTRICAL	10	3x bidirectional	
Ē	IO Isolation	No, but camera has 1.5kV PoE isolation	
ш -	Connectors	RJ45, 4 pin LEMO EXG 00 304	
IES	Real-time Image Processing	Yes. JPEG compression core implemented as a standard configuration	
	Software	Compatible with OptoMotive SHARKi software and any other GigE vision software	
, TIO	Operating System	Windows 7, Windows 10, 64bit or 32bit	
NN	Protocols	GigE Vision® 1.2 and GenICam™ 2.0 compliant	
Ē	Supported Vision Libraries	MathWorks MATLAB, MVTec HALCON, National Instruments LabVIEW etc	

HIGH-SPEED CAMERAS

CUTTING-EDGE, HIGH-PERFORMANCE CAMERAS FPGA TECHNOLOGY FOR REAL TIME IMAGE PROCESSING STANDARD AND FULLY CUSTOMIZED IMAGING SOLUTIONS

OPTOMOTIVE LTD.

KOPRSKA ULICA 98 T SI-1000 LJUBLJANA E SLOVENIA, EU V

T: +386 (0) 1 429 29 14 E: info@optomotive.com W: www.optomotive.com

OPTOMOTIVE

OPTOMOTIVE LTD.

KOPRSKA ULICA 98 SI-1000 LJUBLJANA SLOVENIA, EU

T: +386 (0) 1 429 29 14 E: info@optomotive.com W: www.optomotive.com